CLEEN Consortium Open Session

October 27, 2010

P. M. Niskode' Program Manage Rick Stickles TAPS II Manager Barry Allmon Open Rotor Manager Ross DeJong FMS/ATM Program Mo

ecomagination^{ss}

GE CLEEN Technologies

1. Open Rotor

2. TAPS II Combustor

3. FMS/ATM Integration

FAA CLEEN Program Goals

	N+1 (2015) CONVENTIONAL CONFIGURATION RELATIVE TO 1998	N+2 (2020-25) UNCONVENTIONAL CONFIGURATION RELATIVE TO 1998	N+3 (2030-35) ADVANCED CONCEPTS RELATIVE TO 2005
NOISE	-32 dB cum below Stage 4	-42 dB cum below Stage 4	-71 dB cum below Stage 4
LTO NOX EMISSIONS (BELOW CAEP 6)	-60%	-75%	better than -75%
AIRCRAFT FUEL BURN	-33%	-50%	better than -70%

Develop and demonstrate (TRL 6-7) certifiable aircraft technology

GE CLEEN Program Goals Timeframe: CY 2010-2015

Open Rotor

- 26% fuel burn reduction (relative to CFM56-7B)
- 17 EPNdB noise reduction (relative to stage 4)

TAPS II Combustor

Emissions 60% below CAEP/6

FMS & ATM

- 7% fuel burn/CO2 reduction
- 22% landing noise reduction (area of 60 EPNdB footprint)

1. Open Rotor

GE Open Rotor Overview

Goal

- 26% fuel burn reduction (relative to CFM56-7B)
- 15 to 17 EPNdB noise reduction (relative to stage 4)

OR Program has two work elements:

- Blade aero-acoustic assessment and
- Pitch Change Mechanism (PCM) including control system integration

Open Rotor Performance

Benefits

Specific Fuel Consumption (SFC):

$$SFC \approx \frac{v_0}{\eta_{overall} \cdot FHV} = \frac{v_0}{\eta_{thermal}} \cdot \eta_{transfer} \cdot \eta_{propulsive} \cdot FHV$$

Core

Fan Pressure Ratio

driven by:

- Thermal efficiency: $\eta_{thermal}$
- Transfer efficiency: η_{trans}
- Propulsive efficiency: η_{prop}

Open Rotors provide very mgn propansive ratio efficiencies through very low fan pressure ratios

Open Rotor Noise Physics

Acoustic design features can reduce efficiency gains

Pylon Wake Interaction

Incidence Angle

Open Rotor Fan Technology Key Technical Challenges

FUEL BURN OPPORTUNITY/ NOISE

CHALLENGE 16 Modern Open Rotor **Program Goal** 14 12 CUM Margin, re: CH 4 (EPNdB) Chap 5 (projected) Modern Open Rotor (current estimate) GE36 (1980) 10 25 30 35 15 % Fuel Burn Benefit

INSTALLATION CHALLENGE

Revolutionary Fuel Burn Advantage ... Significant
Challenges

Open Rotor Blades Program Plan

- Develop advanced technology blade designs
- Refine designs thru aero-acoustics model tests
- Project blade model data to full-scale application

Phase II FAA CLEEN Effort Builds upon Phase I NASA/GE Effort

Open Rotor PCM System Definition

Selected Hydraulic System for Improved Reliability and Weight Savings

Technical Issues and Challenges

- Transfer of fluid from stationary to rotating system
 - Control system responses
- Integration of PCM hydraulics into engine oil system
 - Heat dissipation

Open Rotor PCM Program Plan

Validation of hydraulic oil transfer mechanism thru a rig test

- Conduct Thermal Management Studies
 - Develop whole engine thermal model with flight profiles
 - Establish component requirements

2. GE TAPS II Combustor

FAA CLEEN Combustion System Goals

- ✓ LTO NOx emissions 60% margin to CAEP/6
- Cruise NOx emissions
 9 g/Kg fuel
- Solid Particulate Matter 90% margin to CAEP/6

(based on Smoke no.)

- Scale TAPS system
 - ✓ FAA CLEEN Goal
 - GEA goal

Narrow body, regional & business jets

GE Aviation Approach: TAPS (Twin annular Premixing Swirler)

Twin annular flames

- Staged combustion within mixer
- Lean-premixed fuel/air mixture in main swirler for reduced NOx at high power
- Central pilot for good operability and low CO/HC at low power
- Greater NOx Reduction at Cruise

FADEC sets optimum fuel splits

 Balance Emissions, Operability Durability, and Dynamics

Combustion System Development

3. FMS/ATM Integration

FMS/ATM Overview

FMS/ATM Overview

Goals

- Optimize the 4-D trajectory flown by the aircraft throughout flight
- Implement GE's FMS technologies to optimize take-off, cruise and landing
- Synchronize trajectories in airborne FMS and Lockheed Martin's ERAM
- Utilize AirDat's accurate real time weather to reduce fuel consumption
- Demonstrate technologies with Alaska Airlines

Key Activities

- Collect baseline data to quantify fuel burn, noise and emissions
- Mature FMS & FMS/ATM technologies
- Determine optimum use of weather
- Develop simulation environment to emulate broad range of scenarios

 Territorial

 Develop simulation environment to emulate broad range of scenarios

 19
 19
 11/12/2010

 11/12/2010

FMS/ATM Program Plan

Challenges & Technical Issues

Technology Maturation

- Reaching TRL 6-7 requires significant coordination with FAA
- AEE, ATO-P, ATO-E and Flight Standards

Simulation Environment

- Creation of real time FMS-ERAM simulation environment
- Necessary to model and quantify fuel savings
- Accommodate multiple scenarios & technologies

Weather Benefits

Numerous weather options and variants of data to analyze

Flight Demonstration

- FMS/ERAM will require shadow mode of live ATC
- Requires considerable planning and FAA coordination

Future Symposium Topics

- Plan/process to feed CLEEN progress back into standardization committees
 - -e.g. RTCA SC-214 4D trajectory downlink

